Text mining a Portuguese book on Freemasonry: Disclosing network communities' features

```
Conceição Rocha<sup>1,3</sup>; Alípio Mário Jorge<sup>2,3</sup>; Márcia Oliveira<sup>1,3</sup>; Paula Brito<sup>1,3</sup>; João Gama<sup>1,3</sup>; Carlos Pimenta<sup>1,4</sup>
```

¹ Faculdade de Economia da Universidade do Porto

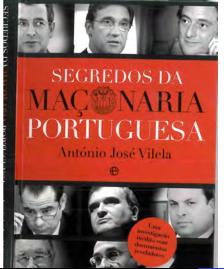
²Faculdade de Ciências da Universidade do Porto

3LIAAD/INESC TEC

⁴OBEGEF

INForum 2014

Objective



Extract named entities from a Portuguese book on Freemasonry and explore network communities based on their co-occurrences in the same sentences

Difficulties

Some difficulties:

- Pre-processing the text
 - the structure of the scanned book text page breaks
 - 'junk' like page numbers
 - mistakes/limitations of Optical Character Recognition (OCR)
- Named entities extraction
 - limitations of free software on Portuguese language
 - different designations used for the same entity

Software

Program developed in R

packages: tm, gdata, stringr, cwhmisc, openNLP and Hmisc

Social network analysis - Gephi software

Methodology

Process main steps:

- Phase 1
 - 1 remove page numbers and empty lines
 - 2 remove 'junk' based on their patterns
 - extract the named entities using regular expressions (capital letters and lower — e.g. presidente, câmara, deputado)
- Phase 2
 - 1 tag terms list as part-of-speech
 - 2 remove all the terms that do not have at least one tag 'prop'
 - 3 remove the first word from terms starting by 'pron-det'
 - 4 remove some stop words
 - 5 identify the named entities

Word cloud

Entities appearing 20 or more times in the text

Validation

12650 events corresponding to 5502 unique terms in the book

To evaluate the term extraction:

125 book' pages with 3866 named entities have been manually labeled (1/3 of the text book)

	Phase 1	$Phase\ 1 + Phase2$
extracted terms	5089	3075
named entities	3205	2982
recall	0.84	0.78
precision	0.63	0.97
F — measure	0.72	0.865

Network characteristics

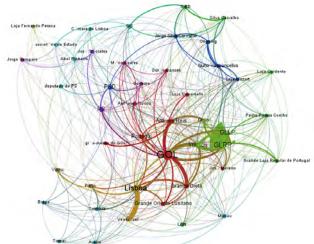
4730 nodes and 24997 edges undirected and weighted graph

Table: Statistics attributes

	average clustering coefficient	0.851
	average path length	3.445
	average degree	10.57
	average weighted degree	11.75
	network diameter	12
Network	network radius	1
	graph density	0.002
	modularity	0.682
	<i>№</i> of communities	268
	<i>N</i> º weakly connected components	238

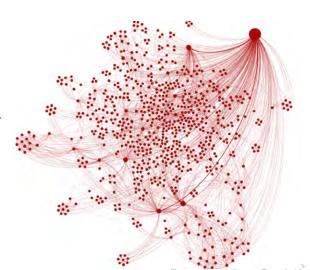
Social network graph

Social network graph filtered by degree - minimum 81

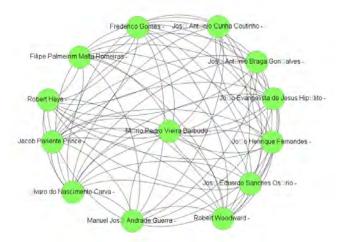


Main community

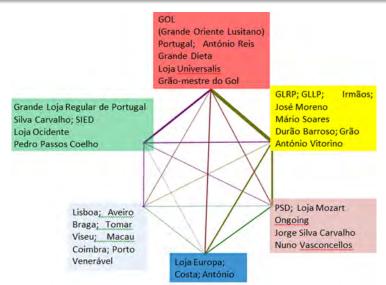
comprises the majority of nodes heterogeneous exhibits a rich internal structure



A component and a clique of the network



Higher-level representation of the Social network



Remarks and Conclusions

- ⇒ Inclusion of the second phase on the process improves the quality
- \Rightarrow F measure increases from 0.72 to 0.865

Considering that:

- the text mining procedure to extract entity names is not finished
- the relation between entities is given by their co-occurrence in the same sentence
- ⇒ The results are quite meaningful and we can see relevant connections in terms of some political organizations, politicians and other public figures

Further Work

- including an entity synonymy step and a disambiguation step
- adjusting the network model so that links between entities are based on the verbs

The results obtained so far may also be considered a step towards the creation of a text intelligence system to be used in the study of the social context of possible economic and financial offenses.

Acknowledgments

This work is partially funded by FCT/MEC through PIDDAC and ERDF/ON2 within project NORTE-07-0124-FEDER-000059 and through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-037281. Márcia Oliveira acknowledges funding from FCT, through PhD grant SFRH/BD/81339/2011.